SolrEyes

SolrEyes is a basic but effective wrapper around Apache Solr which has been developed by the BRUCE project as a replacement for Blacklight.

As per our previous post, significant problems were had in stabilising Blacklight, so a brief exploratory was carried out in attempting to replicate that functionality which was necessary to the project (not all of the existing functionality was necessary for our needs). Having been successful we went on to introduce support for ranged facets, allowing us to limit by date or any other rangeable field.

Technology

SolrEyes uses the SolrPy Python library to communicate with Apache Solr and the Mako templating language to provide the User Interface. It presents the results of search requests to the user with facet counts and current search parameters alongside the search results themselves. It allows for facets to be added and removed, as well as allowing for sorting and sub-sorting and fully supports flexible paging over result sets.


Note that the data presented in these screen shots is artificial, and should not be considered indicative of anything.

It is strongly inspired by Blacklight, and provides all of the basic search and facet functionality from that system. In addition, the configuration has been done as a JSON document which makes it easier to separate from the application and to modify and extend.

Reporting features

A key difference between SolrEyes and Blacklight is that SolrEyes comes pre-prepared for some reporting features. Every search constraint and every search result field is passed through a processing pipeline which converts it from the value in the Solr index into the display value, and that pipeline is created in configuration by the user.

In the simplest case, this allows us to switch the indexed value M in the gender field for the word Male before it is displayed. This is done by specifying that the facet values for the gender field should be passed to a function called value_map which maps M to Male and F to Female:

“facet_value_functions” : {
    “gender” : {“value_map” : {“M” : “Male”, “F” : “Female”}},
}


This shows a configuration option which exchanges facet values for display values in the gender field.

This approach could also be used, though, to substitute date ranges for descriptions, such as “RAE 2008”, or other useful terms.

At the more powerful end of the spectrum, though, this feature can be used to process result values themselves to present information as functions of those values. An example of the way this is used in BRUCE is as follows:

We wish to present counts of the number of publications that researchers have published in the reporting period. The reporting period can be set by choosing the appropriate date range from the navigation (this constrains the publication_date field to contain values from that range). This means that we cannot index this data in advance, as it is dependent on the exact date range that the user selects, which could be absolutely anything. Instead we pipe the date range selected and a result field which contains the dates on which the user published to a function which can compare those publication dates with the constraint range and return a count of those publications which fall within it. In order to achieve this effect the documents in our index contain a list of the dates upon which the author published.

“dynamic_fields” :{
    “period_publications_count” : {
        “date_range_count” : {
            “bounding_field” : “publication_date”,
            “results_field” : “publication_date”
        }
    }
}


This shows a configuration of a “dynamic field” which presents the count of values in the index field publication_date which fall within the constraining facet publication_date.


This screenshot shows a single record which has been constrained to all publications from a single year (see the green box which displays the constraint). The final 6 result columns contain values which are dynamically generated by comparing the publication dates of the different publication types with that constraint. So, here, S W Burnham is seen to have published 2 items in 1880: 1 Book and 1 Conference Paper.

External Take Up

SolrEyes has proved sufficiently simple to operate and configure while providing useful functionality that it has also had some take-up outside of the project.

The functionality was designed deliberately to be flexible to other use cases (although the reporting use cases were the ones focussed upon by the project team), and as such it has also found use as a front-end for a bibliographic data index.

The Open Bibliography project (which provided the MedLine data that the BRUCE project built the CERIF test data from), the OKF and Cottage Labs are also involved in the development of the BibJSON standard and related BibServer software which powers the under-development BibSoup service. This service is using SolrEyes to operate the search and faceted browse features, and so the software is already getting feedback and enhancements from external developers.

We hope that SolrEyes fulfills a niche for a simple but powerful interface to Apache Solr. Its advantages over Blacklight and VuFind are in the simplicity of the environment and a generic approach to presenting the contents of a search index (both Blacklight and VuFind are more geared towards providing catalogue interfaces).

Using SolrEyes

The SolrEyes software can be downloaded here.

To use SolrEyes successfully, it requires the most recent development version of Solrpy (we found a bug in 0.9.4 and submitted a patch which was accepted, but which has not yet been packaged in a formal release). You can install the latest version with (all on one line):

sudo pip install -e hg+https://solrpy.googlecode.com/hg/#egg=solrpy

You will also need to install web.py and mako which you can do with easy_install:

sudo easy_install web.py
sudo easy_install mako

Next go into the directory where you downloaded SolrEyes and modify the config.json file with your custom configuration (documentation is inline).

Finally, you can start SolrEyes by executing:

python solreyesui.py 8080

This will start SolrEyes on port 8080 on localhost.

We are very interested in taking the development of SolrEyes forward so please contact us if you have any questions, feedback or suggestions.

Advertisements

2 Responses to SolrEyes

  1. […] we have produced the index, we feed it into SolrEyes (discussed in more detail here) which is configured to produce the following functionality based on the indexed […]

  2. […] SolrEyes was installed from BitBucket (instructions detailed here) […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: